
J.  Org. Chem. 1991,56,4093-4094 409s 

Asymmetric Heck Reaction: A Catalytic Asymmetric Synthesis of the Key Intermediate for 
A9(12)-Capnellene-3~,8~,10a-triol and A~(12)-Capnellene-3/9,8/9,10a,14-tetrol 

Katsuji Kagechika and Masakatsu Shibasaki* 
Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060, Japan 
Received February 11,1991 

Summary: A catalytic asymmetric synthesis of the key 
intermediates 21 and 22 for the capnellenols has been 
achieved (80% ee) by an asymmetric Heck reaction fol- 
lowed by an anion capture process. Furthermore, an im- 
proved synthetic route to (A)-capnellenols has been also 
developed. 

Capnellenols are sesquiterpene alcohols 1-6, isolated 
from sun-dried colonies of the soft coral Cupnella imbri- 
cata.' These substances appear to have protective roles 
against fish predation and invasion by microorganisms, 
larvae, and algaeq2 In 1986 we completed the first total 
syntheses of (f)-Ae(12)-capnellene-88,10a-diol (l), (*)- 
Ag(12)-capnellene-38,8~,10cy-triol (3), ( f)-AWl2)-capnellene- 
3&8&10a,14-tetrao1(6) using a Saegusa-Ito reaction as a 
key step, which required a stoichiometric amount of Pd- 
( O A C ) ~ ~  Herein we report a catalytic asymmetric syn- 
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thesis of the key intermediates 21 and 22 for 3 and 6, in 
which an asymmetric Heck reaction, followed by a regio- 
and ~tereocontrolled anion capture process, plays a key role 
to afford 21 and 22 in 80% ee.' This is the first example 
of an asymmetric Heck reaction followed by an anion 
capture process.6 

We reasoned that treatment of 10 with a palladium 
catalyst bearing a chiral ligand in the presence of a silver 
salt and some oxygen nucleophile (ROH) would regiose- 
lectively afford the optically active bicyclic compound 12, 
a potential intermediate for 3 and 6, via the T-allyl in- 
termediate 1l.B The regiochemistry of 12 was expected 
to be controlled by steric factors. The prochiral alkenyl 
iodide 10 was efficiently synthesized in 61% overall yield 
starting with 7 as shown in Scheme I. First, with the aim 
of application to an asymmetric synthesis, reactions uti- 
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'(a) BqNOH, dioxane, H20 (74%); (b) NaBH4 (100%); (c) 
TsCl, DMAP, pyridine (96%); (d)16 Alz08, ClCHzCH&l(86%); (e) 
[Pd(allyl)C1]z, (R,R)-CHIRAPHOS, BqNOAc, toluene (61%). 
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#(a) (TMSOCH&*, TMSOTf (77%); (b) NaB& (100%); (c) 
TsCl, DMAP, pyridine (84%); (d) DBU (98%); (e) TsOH, acetone 

BqNOAc, DMSO (89%); (h) NaOMe (86%); (1) PDC, MS3A 

LDA, ICHzC(OMe)==CHCOzEt (86%); (m) 30% HC104, EBO 
(90%); (n) NaOEt, EtOH (85%). 

lizing (dipheny1phosphino)ethane (DIPHOS) as a ligand 
were investigated, and it was found that exposure of 10 
to P ~ ( O A C ) ~  (5.8 mol %), DIPHOS (5.7 mol %), and 
tetrabutylammonium acetate (1.72 equiv) in CH&N (60 
OC, 112 h) gave 12 (R = Ac) (52%) in a highly stereo- and 
regiocontrolled manner. The reaction did not proceed in 
the absence of tetrabutylammonium acetate. The ste- 
reochemical aseignment for 12 followed from the 'H NMR' 
The acetate 12 was transformed into the key intermediate 
21 for (&)-3 and (f)-6 by the sequence: (1) LiOH in 
aqueous THF (89%); (2) PCC-MS4A in CH2C12 (95%); 
(3) 10% Pd-C in 10% aqueous KOH-EtOH under H2 
(83%).* The spectral data of (*)-21 thus obtained were 
identical with those of an authentic sample? The above 

(88%); (f) LDA, TfzNPh (62%); (g) Pd(OA+, (SI-BINAP, 

(95%); (i) CuBr, Red-Al, u-BuOH, THF (83%); (k) DBU (90%); (1) 

(7) J d  = 0.8 Hz. Irradiation of Ha ehowed au enhancement of Hb 
(1.1%) and Hc (1.1%). Jd = ca. 8 Hz is expected for the other epher. 
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synthesis is an improved synthetic route to (*)-3 and (f)-6 
in terms of the use of a catalytic amount of Pd(OAc)* 

The above reaction was next applied to a catalytic 
asymmetric synthesis. However, addition of a silver salt 
to the reaction medium, which appears to be essential to 
obtain a cyclized product with a high ee via a Pd+ inter- 
mediate with a 16-electron confiiation such as 19," was 
found to cause the decomposition of 10, probably owing 
to the presence of the cyclopentadiene moiety. For this 
reason, 12 (R = Ac) was obtained with only a low ee. That 
is, treatment of 10 with [Pd(allyl)Cl], (10 mol %), (R,- 
R)-CHIRAPHOS (10 mol %), and tetrabutylammonium 
acetate (2.9 equiv) in toluene (60 "C, 144 h) provided 12 
(R = A c ) ~  with 20% ee (61% yield).1° 

Next, we undertook a catalytic asymmetric cyclization 
utilizing the alkenyl triflate 18," which was expected to 
produce the 16-electron Pd+ intermediate 19 efficiently 
even in the absence of a silver salt, leading to 20 with high 
ee.* The prochiral alkenyl triflate 18 was readily prepared 
in 35% overall yield starting with 1312 as shown in Scheme 
11. Treatment of 18 with Pd(OAc)2 (1.7 mol %), (S)- 
BINAP (2.1 mol %),13 and tetrabutylammonium acetate 
(1.7 equiv) in DMSO at  20 "C for 2.5 h produced 209 in 
80% ee (89% yield)." The structure of 20 was determined 

Communications 

from the 'H NMR spectrum which showed J h  = -0 Hz. 
In a previous paper:b we reported that an asymmetric 
Heck reaction of an alkenyl iodide is realtively fast when 
AgoAc is used, indicating that the Pd+AcO- intermediate 
is formed effectively, but the ee of the product is low. 
Therefore, it is noteworthy that 20 was obtained with a 
high ee even in the presence of excess tetrabutylammonium 
acetate. 

The cyclized product 20 was then converted to 21: [@D 
+532" (c 0.85, CHC13) (80% ee), the key intermediate for 
3 and 6, in a four-step process (60% overall yield).& 
Furthermore, 21 was transformed into the ABC ring sys- 
tem 2 2  [.Iz1D +530° (c 1.00, CHClJ (80% ee) in a 
three-step process (65% overall yield).3b 

In conclusion, we have achieved a catalytic asymmetric 
synthesis of the key intermediates 21 and 22 for capnel- 
lenols by the use of the asymmetric Heck reaction followed 
by an anion capture process as well as an improved syn- 
thetic route to (*)-3 and (*)-6. This is the first example 
of a catalytic asymmetric synthesis of a polycyclo- 
pentanoid. 
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